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The formulation and solution of a new algorithm for queue management
and coordination of traffic signals along oversaturated arterials are pre-
sented. Existing traffic-control and signal-coordination algorithms deal
only with undersaturated steady-state traffic flow conditions. No prac-
tical algorithms are readily available for oversaturated flow conditions.
The main idea of the procedure is to manage queue formation and dis-
sipation on system links so that traffic flow is maximized by efficiently
using all green time, preventing formation of de facto red, accounting
for the non-steady-state conditions, and providing time-dependent con-
trol measures. The problem is formulated as a throughput maximization
problem subject to state and control variables. The solution is then
obtained using genetic algorithms. The results show that the control pro-
cedure can produce dynamic and responsive control so that traffic pro-
gression is attained and all undesirable conditions such as queue
spill-back and de facto red are avoided.

Traffic congestion is a daily occurrence in most urban areas in the
United States. During these conditions efficient traffic management
and signal control are critical determinants of the quality of opera-
tions of arterial systems. As such, appropriate tools for signal con-
trol and queue management in oversaturated traffic conditions are
needed. Oversaturation is defined as a severe case of congestion in
which vehicle queues along signalized arterials grow until they
impede traffic operations at upstream intersections. Oversaturation
may last for a limited time, but its aftereffects usually take a dis-
proportionately long time to clear. The need for effective traffic
control on oversaturated arterials becomes even more pressing with
the deployment of more efficient traffic management schemes in
intelligent transportation systems (ITS).

A new procedure is presented for signal control on oversaturated
arterials based on queue management and efficient green-time use
concepts. The main idea is to manage queue formation and dissipa-
tion on system links to maximize traffic flow by maximizing the use
of green time, preventing formation of de facto red, accounting for
the non-steady-state conditions, and providing time-dependent con-
trol measures. The problem is formulated as a throughput maxi-
mization problem subject to state and control variables. The solution
to the problem is then obtained using genetic algorithms (GAs), an
artificial intelligence technique.

BACKGROUND

Early attention to signal control in oversaturated conditions was
reported by Gazis (1), who proposed a way (using graphic methods)

to control two closely spaced and oversaturated intersections. This
procedure, however, is of limited use unless there are explicit con-
straints on queue length. Longley (2) presented a procedure for con-
trol of congested computer-controlled networks. The basic premise
of Longley’s procedure is to manage queues so that a minimum num-
ber of secondary junctions are blocked. Singh and Tamura (3) used
the dual function of a delay minimization function to obtain a two-
level hierarchical optimization strategy to control congested inter-
sections. The control procedure presented was of the preventive 
type where constraints were used to control formation of queues.
Michalopoulos and Stephanopoulos (4,5) used the optimal control
theory to devise a control procedure that minimized delay of a sys-
tem of oversaturated intersections subject to queue-length constraints.
As it turned out, the solution to the problem may or may not exist if
there is more than one constraint per intersection, and the optimal
control becomes quite complex and impossible if pretimed signals are
used. Vaughan and Hurdle (6) presented a theory for traffic flow for
congested conditions in which the impact of origin-destination pat-
terns on traffic dynamics and vice versa were explicitly modeled.
However, the theory does not apply if congested intersections are
close together. Shibata and Yamamoto (7) presented a methodology
for control of congested urban road networks. This procedure, how-
ever, does not apply for closely spaced intersections where queue
interference is present. Gal-Tzur et al. (8) presented a control method
based on metering traffic to the capacity of the critical intersection
(the one to become congested first) and then used TRANSYT-7F (9)
to design a coordination plan. This procedure may be useful only in
limited situations. Hadi and Wallace (10) reported on forthcoming
enhancements to TRANSYT-7F to enable the program to analyze
and optimize signal-timing plans under congested conditions. No
specifics were given. Rathi (11) presented a control scheme based on
avoidance of cross-street traffic spill-over. The scheme is applicable
for recurrent congestion in steady-state flow conditions. Quinn (12)
summarized strategies for congested networks.

None of these methods, however, is capable of dealing effectively
with oversaturated conditions. Oversaturated conditions are charac-
terized by lack of steady-state flow conditions and by significant
interaction among traffic. Hence, during this type of condition, time-
dependent and dynamic control of traffic signals becomes necessary
to deal with traffic conditions as they emerge. The procedure
proposed in this paper can provide this type of control.

The procedure is based on the algorithm presented by Abu-Lebdeh
and Benekohal (13). It is different from previous procedures in many
respects. It is dynamic, and the formulation of the problem accounts
for the important aspects of the dynamics and time-dependent nature
of traffic flow in oversaturated conditions. Several researchers (14,15)
have noted the importance of accounting for the operational effects of
these factors in oversaturated conditions.
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GAs were used to solve the problem. This approach’s adaptive,
robust, directed random (but not exhaustive) search and flexible
form of the objective function make it an ideal solution technique
for dynamic control problems, particularly given the combinatorial
explosion often associated with this class of problems.

MOTIVATION FOR STUDY

At least two primary reasons account for the lack of control proce-
dures for oversaturated conditions. First, traffic flow characteristics
in a coordinated signal system are more complex than those in iso-
lated intersections (16,17). Second, in oversaturated conditions, the
problem becomes even more complex as traffic interaction increases
and the steady-state conditions disappear. These two factors together
make coordinated signal-system control in oversaturated conditions
a complex task.

Notwithstanding these complexities, traffic engineers still need
appropriate tools to coordinate signals in oversaturated conditions.
Because such tools are not available, the engineer may inappropri-
ately use currently available signal-coordination software such as
PASSER II-90 (18) or TRANSYT-7F. These and similar software
are intended for undersaturated conditions and as such they are not
appropriate to oversaturated conditions. The results obtained from
such inappropriate use can be misleading and may lead to inefficient
traffic operation and prolonged congestion.

To illustrate what happens when this software is used inappro-
priately to design signal control in oversaturated arterials, conditions
were created to simulate oversaturation. Demand at the boundaries
of the system was made continuous and high enough to exceed the
capacity of the system links. The two popular signal optimization
and coordination programs, PASSER-II and TRANSYT-7F, then
were used to optimize signal settings for a four-intersection arterial.

In oversaturated conditions with long queues, the two models do
not correctly consider the queue length. TRANSYT-7F assumes that
vehicles are stacked vertically (i.e., there is no queue length). For
PASSER-II the user must specify the number of cars in the queue at
the beginning of each cycle, and that amount cannot be more than five
cars. Plots of offsets versus queue length for one of the arterial links
(Figure 1) show that the offsets are the same regardless of the queue

length. This is counterintuitive because when the queue length on the
receiving lane is longer, the offset for the upstream traffic should be
longer. As a result, the two programs may report receiving more cars
for a given link than what the link can handle physically. Intuitive rea-
soning indicates that a more realistic trend (not necessarily value) of
offsets would be like those labeled “queue-based” in Figure 1. The
queue-based offsets were estimated on the basis of typical assump-
tions of speed, acceleration rates, and discharge headways for given
queue lengths.

Furthermore, for oversaturated conditions, when a queue does not
clear completely and vehicles are left behind at the end of the green,
these vehicles should be included automatically in the subsequent
cycle. This process should apply for the entire control period. More
important, the operational effects of carrying over vehicles and adding
them to subsequent cycles should be accounted for. However, neither
program does that. Instead, both TRANSYT-7F and PASSER-II opti-
mize one condition and assume the rest of the control period to be a
repetition of this condition. This assumption is reasonable in cases of
undersaturated flow. In oversaturated conditions, each cycle is differ-
ent. Furthermore, each cycle has some bearing on the cycles that
follow. It is this dynamism that these and similar programs do 
not correctly consider, which makes their use in oversaturated flow
conditions inappropriate.

This is not a criticism of PASSER-II or TRANSYT-7F because
neither program is intended for application in this type of traffic con-
dition. The point, rather, is to illustrate that inappropriate use of
these otherwise useful programs may lead to erroneous conclusions.

Therefore, signal-coordination procedures that are appropriate for
oversaturated conditions are needed. Specifically, such procedures
should explicitly account for the operational effects of queues.

FORMULATION OF CONTROL PROCEDURE

Characteristics of Flow in Oversaturated Conditions

In formulating the control procedure for oversaturated intersections,
it is essential to consider the relevant traffic phenomena that take
place during oversaturation. When oversaturation prevails, one or
more of the following interdependent conditions is encountered:

1. Flow conditions are not steady-state. Because more traffic is
demanding service than can be accommodated, conditions during
any time window are a function not only of traffic arrival and depar-
ture and signal control, but also of conditions during previous time
windows. Hence, when controlling traffic during any cycle, the con-
trol scheme should account for conditions during previous cycles as
well as conditions during the current cycle. This is a critical consid-
eration that dictates that signal control become dynamic and time-
dependent. In this case the problem is much more complicated than
steady-state conditions in which one cycle is optimized and then
applied for the entire study period.

2. Queue build-up. When green times for some approaches are not
sufficient to process traffic demand, queue build-up forces upstream
departure headways to increase because of hesitation by motorists,
which may reduce capacity (14,15,19) and further propagate this
effect to more intersections upstream.

3. De facto red. Extreme cases of queue build-up lead to com-
plete blockage of upstream signals, where no traffic can discharge
on a green signal. This condition is referred to in this paper as de
facto red.FIGURE 1 Variation of offsets with queue length.
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A control procedure for oversaturated conditions must account for
these traffic conditions.

Optimization Criteria

During undersaturated flow conditions, successive signals are coor-
dinated to provide a through green band so that traffic arriving from
upstream signals goes through downstream intersections without
having to stop. In this case the objective (criterion) of the control
procedure is to minimize some disutility measure such as delay or
number of stops. In oversaturated conditions, however, the concerns
and overriding goals are different. Specifically, in oversaturated
conditions a more appropriate objective would be to maximize the
system throughput (20).

Formulation

The proposed control procedure explicitly accounts for the conditions
noted above and sets the control parameters to maximize system
throughput. The procedure achieves this by ensuring that no green
time is wasted and that all green time is used to the greatest (and most
practical) extent possible. In addition, it ensures that when queues
build up, they do not block the respective upstream intersections and
ensures that de facto red is avoided. Through appropriate state equa-
tions, the control procedure ensures time-dependent, dynamic control.
The control procedure is proactive; it attempts to influence traffic
entering the system and then provides control so that undesirable
conditions do not develop.

Although avoiding de facto red and not wasting green may appear
as one class of actions, they are not. De facto red entails lost green
time because traffic is not moving, whereas wasted green refers to
green time that is not fully used although traffic is moving. De facto
red may or may not lead to blockage of the intersection, depending
on driver behavior.

In summary, the essence of the control procedure proposed here is
to maximize system throughput while (a) ensuring using of all green
time efficiently (no wasted green); (b) preventing formation of de
facto red at intersections in the system; and (c) accounting for the
non-steady-state system and providing time-dependent control mea-
sures. Conditions 1 and 2 ensure that no system capacity is lost and
Condition 3 updates traffic conditions continuously (i.e., every cycle)
so that control parameters are generated to respond to actual, not
assumed, conditions. Mathematical expressions for these conditions

are derived next. Lost time and transition (yellow) phases are not
considered in the formulation at this point; however both can be
incorporated easily.

Consider the three-intersection system shown in Figure 2 and
refer to traffic flowing from Approach/Link 1 to Approach/Link 2.
The following definitions are used:

n = number of lanes on a given approach;
si = adjusted saturation flow rate per lane of Approach

i, veh/sec;
Si = adjusted saturation flow rate for Approach i,

veh/sec, (Si = nsi);
LV = average effective vehicle length when stopped,

ft/veh;
Li = length of Link i, ft;

l(k) i = storage on receiving Link i at the beginning of
Cycle k, ft;

t(k) i+1 = time for acceleration wave to reach tail of queue
when signal turns green for Approach i + 1 at 
the start of Cycle k, sec;

tsi+1 = time for stopping wave to reach tail of queue
when signal turns red for Approach i + 1 when
Link i + 1 is full, sec;

tq(k) i, i+1 = time for Queue i to join Queue i + 1;
υ = speed of acceleration wave (a shock wave), ft/sec;
λ = speed of a stopping wave (a shock wave), ft/sec;

Cyc(k) j = length of Cycle k at Intersection j, sec;
g(k) i = effective green time for Approach i during Cycle

k, sec;
DV(k) i = discharged vehicles from Approach i during

Cycle k, veh;
AV(k)i = arriving vehicles into Approach i during Cycle

k, veh;
q(k) i = length of queue on Approach i at the beginning of

Cycle k, veh;
off(k) i, i+1 = relative offset between Approaches i and i + 1 for

Cycle k, sec;
exoff(k) i, i+1 = extended (or system) offset between Intersections

i and i + 1 for Cycle k, sec; and
d(k) i = mean departure rate from Approach i during

Cycle k, veh/sec.

The following subsections present the mathematical formulation of
the previously mentioned three conditions.

FIGURE 2 Notation for link and intersection numbering.



122 Paper No. 970707 TRANSPORTATION RESEARCH RECORD 1603

Using Green Time Efficiently

For efficient use of green time two interrelated conditions must be sat-
isfied: Use of green time must be maximized, and this must be done
at the maximum practical traffic-flow rate. To achieve the first, off-
sets should be set so that the first vehicle released from Approach 1
reaches the tail of the queue on Link 2, q2, as the tail of q2 has reached
the desired speed (or the speed limit).

The time required for the tail of q2 to start moving, t(k)2, is 
determined by using shock-wave concepts. For Cycle k, when the
signal for Approach 2 turns green, an acceleration wave ensues
and reaches the tail of the queue in t(k)2 sec, where t(k)2 = q(k)2 LV/υ
and q(k)2 is the number of vehicles queued on Approach 2 at the
beginning of Cycle k.

The time required for the front of q1 to join the tail of q2, tq(k)1,2, as
the tail has reached its desired speed is determined on the basis of
the traffic acceleration rate and the terminal speed. This can be
determined easily by using Newton’s laws of motion.

Therefore, to use green time efficiently, the offset is set so that it
is equal to the difference between the time the two queues join and
the time it takes for the tail of the downstream queue to start moving.
In mathematical terms this can be expressed as

Note that off(k)1,2 can be positive, negative, or zero.
Using green time at a maximum rate means maintaining the traf-

fic flow rate at or close to the saturation flow rate by the combined
effect of setting offsets as discussed above and by allocating green
time–based traffic demand. Traffic demand at each link is deter-
mined dynamically (and updated) each cycle through the state equa-
tions (by keeping track of the number of vehicles discharging from
and arriving at each approach).

Preventing De Facto Red

De facto red occurs when the signal indication is green but traffic
cannot proceed because of backed-up traffic on the receiving link. To
guard against this condition, green time for the upstream approach
should be set with the knowledge of the length of the green time for

off( ) ,k q k kt t1 2 1 2 2 1= −( ) , ( ) ( )

the downstream approach, the offset between the two intersections,
and the time it takes for a stopping shock wave to propagate upstream
on a full link L2 when the signal turns red for Approach 2.

On examination of the geometry of the time-space diagram in
Figure 3, it is clear that avoiding de facto red for Approach 1 can be
achieved if the following condition is satisfied:

where ts2 = L2/λ and g(k)i is the green time for Approach i during
Cycle k.

Accounting for Non-Steady-State Conditions and
Providing Time-Dependent Control

Because of the significant longitudinal interaction among traffic dur-
ing oversaturated conditions, flow during a given period is influenced
by conditions during preceding periods. Hence, a realistic control dur-
ing this type of condition should explicitly account for this interaction.
The proposed procedure achieves this by tracking the formation and
dissipation of queues at different approaches in the system by using a
group of state equations, one for each internal link. For example, a
queue at the downstream approach at the beginning of Cycle k + 1
equals the queue at the same approach at the beginning of Cycle k
minus the traffic that departed the approach during Cycle k plus the
traffic that arrived during the same cycle. For Approach 2 in this
example, the general state equation is

where q(k)i is the number of vehicles in the queue at Approach i at
the beginning of Cycle k (q(k)i is known from the previous cycle or
given if k = 1); DV(k)i is the number of vehicles that departed from
Approach i during Cycle k; and AV(k)i is the number of vehicles that
arrived at Approach i during Cycle k. However, the traffic that arrived
during Cycle k at the downstream approach (Approach 2) equals the
traffic that departed the upstream approach during the same cycle in
which turning movements are not accounted for, that is,

AV DVk k( ) ( ) ( )2 1 4=

q q DV AVk k k k( ) ( )+ = − +1 2 2 2 2 3( ) ( ) ( )

[ off( )g t gk k s k2 1 2 2 1 2+ + ≥( ) , ( )] ( )

FIGURE 3 Relationship between signal timing and traffic flow of adjacent
intersections.



Abu-Lebdeh and Benekohal Paper No. 970707 123

The state equations play two important roles. First, they function-
ally connect all internal links so they act as one system. Second, for
a given link, they provide a mechanism for relating conditions of
one cycle to conditions in the previous cycle.

Next, DV(k)1 and DV(k)2 are determined as functions of the respective
green time and storage available on receiving links.

Modeling Signalized Link Traffic Departures in
Oversaturated Conditions

For a given Cycle k, traffic that departs Approach 2 depends on g(k)2,
s2, q2, and AV(k)2. Depending on whether all green time is used at the
upstream approach, the volume of departures from the upstream
link (Link 1 in the example), DV(k)2, is determined by the following
equation:

Ideally, g(k)1 = [g(k)2 – (q(k)2/s2)], in which case Equation 5 reduces to

In this case all green time at the upstream intersection (g(k)1 in this
case) is used and no queue is left behind on Link 2. However, con-
ditions may dictate that some surplus green time be provided or that
not all vehicles depart the downstream link (Link 2 in this case).
Therefore, Equation 5 is used in the control algorithm.

In effect, the role of Equations 3 and 5 is to keep track of the evo-
lution of queues on Link 2. This information is to be used in setting
the control parameters in subsequent cycles. Similar equations may
be derived for all internal links.

Extended Offset

The role of the extended offset is to link relative offsets between each
two intersections (given in Equation 1) to the functioning of the entire
system over subsequent cycles. Figure 3 illustrates the relationship
between signal timing and traffic flow of adjacent intersections, as
follows:

where Cyc(k)i+1 is the cycle length of the downstream intersection of
the given pair of intersections.

Constraints on Queues and Need for Flexible Cycle Length

If the conditions of efficient use of green and no de facto red (i.e., no
lost capacity) are to be satisfied at all intersections, the length of green
for both arterial and side approaches must be flexible, that is, its length
may vary between cycles. This in turn dictates that cycle length be
changeable at each intersection. However, if the cycle length is to be
fixed, then explicit constraints must be placed on the lengths of queues
on each system link. In this case system capacity loss may become
inevitable, in which case a modified form of control must be formu-
lated. This case is not covered in this paper, the focus of which is the
case of minimum system-capacity loss and changeable cycle length.
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Other Important Considerations

The relationships presented earlier make up the main mechanism for
achieving the stated goals. However, other conditions and con-
straints must be satisfied for the procedure to work. Most notable
among these are the limits on cycle length and the minimum green
times for crossing streets. In addition, the law of conservation of
vehicles must hold.

CONTROL ALGORITHM

For a system of j intersections and mcross-street approaches (m= 2j
if all cross streets are two-way), and for a study period of ncycles, the
optimal traffic control formulation to determine the optimal green
times and the corresponding offsets is as follows: Find the trajectories
of control variables (offsets, off(k)i,i+1, and green times, g(k)i) that
maximize the objective function

The first term of the objective function measures the throughput of
the crossing streets. The second term is the throughput of the arter-
ial street as measured by the number of link vehicles. ω̄and ωare to
adjust the throughput for the vehicles that did not travel all system
links. A vehicle is considered to have traveled a link only after it has
exited that link.

The above objective function is maximized subject to the con-
straints on the following control and state variables (Figure 3 presents
the formulation of Constraints 2–4):

1. DV(k)i ≤ q(k)i + DV(k)i–1 i = 1, . . . , j; k = 1, . . , n
2. off(k)i,i+1 = tq(k)i,i+1 – t(k)i+1 i = 1, . . . , j – 1; k = 1, . . . , n

3. exoff(k)i,i+1 = Cyc(k)i+1 – off(k+1)i,i+1

i = 1, . . . , j – 1; k = 1, . . . , n
4. (g(k)i+1 + off(k)i,i+1 + ts i+1) ≥ g(k)i

i = 1, . . . , j – 1; k = 1, . . . , n

5. q(k+1)i = q(k)i – DV(k)i + DV(k)i–1 i = 1, . . . j ; k = 1, . . . , n

6. ω– = – q(1)i × (i – 1)

7. ω = q(n+1)i × (i – 1)

8. g(k)i ≤ maximum value i = 1, . . . , j ; k = 1, . . . , n
9. g(k)i ≤ maximum value i = m– 1, m; k = 1, . . . , n

10. q(1)i are given i = 1, . . . j

Control Algorithm Solution

The problem presented is a typical dynamic discrete-event problem.
Classical solution techniques such as dynamic programming and the
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maximum principle may be used to solve such a problem provided
specific criteria are satisfied. A more recent and superior solution
technique is GAs. GAs were used to solve this problem because of
their ability to deal with large and combinatorial problems and
because of the flexibility they allow in formulating the objective
function.

GAs are robust optimization and search techniques based on the
mechanics of natural selection and natural genetics (21). Although
such mechanics are simple, they are quite powerful. As in all artifi-
cial intelligence techniques, a key feature of GAs is that they provide
an appropriate and efficient method to represent knowledge in the
computer and to get real-world knowledge into an internal or machine
representation. Put simply, a GA works by generating an initial pool
of solutions, represented as string structures, and then through con-
tinuous and systematic copying, swapping, and modifying of partial
strings in a manner that mimics natural genetic evolution, the GA
allows the solution pool to evolve toward improved solutions.

GAs in Transportation

GAs have been applied successfully to traffic and transportation
problems, although their use in this field is still limited. Foy et al.
(22) reported on using GAs to determine signal settings. Hadi and
Wallace (23) used GAs to obtain optimal phasing for signal coordi-
nation. Fwa et al. (24) and Chan et al. (25) used GAs in the combi-
natorial problem of optimizing pavement maintenance. Memon and
Bullen (26) compared GAs to the quasi-Newton gradient method
and chose GAs for real-time optimization of signals.

The main aspect of GAs that made them attractive for use in this
problem is their ability to overcome the combinatorial explosion of
problems like the one at hand. The magnitude of the problem can be
demonstrated easily by the following example. Consider a system
of j intersections, a study period of n cycles, and a range of green
time of y seconds for arterial approaches and z seconds for the key
(or critical) side-street approach. Assume that each intersection has
two phases and that the search for optimal green times is to be done
in s-second steps. On the basis of the formulation of the problem,
there would be n( j + 1) control variables, and hence (y/s)nj × (z/s)n

possible solutions. For a modest system having j = 5 intersections,
n = 10 cycles, y = 50 sec, z= 20 sec, and s= 5 sec, there would be a
total of 1.05 × 1056 solutions. This number would be gigantic with
larger systems and longer control periods. It would take a computer
an extremely long time to evaluate all of these solutions. An intelli-
gent search such as that used in GAs can avoid nonoptimal regions
and learn from past knowledge, thus reaching a near-optimal solu-
tion in remarkably less time. This has direct implication for on-line
control. Furthermore, traditional mathematical programming may
not reveal multiple optimal (or near-optimal) solutions. In situations
like this, GAs were found to provide acceptable solutions within a
practical period (21).

Using GAs for This Case

The control algorithm was applied to a five-intersection system
with the same timing parameters noted earlier. Traffic flow was
assumed to be one way and turns were ignored. The results presented
in the following section were obtained on the basis of the following
geometric and traffic input: L1 = 243.8 m (800 ft), L2. . . . 5= 304.8 m
(1,000 ft), q(1)1=20 vehicles, q(1)2. . . . 5=15 vehicles, LV=7.62 m (25 ft),

λ = 4.26 m/sec (14 ft/sec), υ = 4.9 m/sec (16 ft/sec), si = 1,800 vehi-
cles per hour (vph) for all k, and i = 1, . . . , 5. A mean arrival rate for
cross approaches of 1,260 vph was used.

RESULTS

GA Solution

To ensure unbiased results (i.e., results not dependent on the start-
ing point), runs of the algorithm were executed each starting with a
different random seed number. All runs converged to about the same
objective function value; however, the resulting control trajectories
were different in each run. This is an indication that the problem has
multiple optimal or near-optimal solutions. Nonetheless, all trajec-
tories were of comparable overall quality. The results presented next
are from one selected run.

The run was executed using a micro GA. A micro GA takes a small
population, n for example, converges it, keeps the best individual,
randomly generates n– 1 individuals, converges the new population,
and so on. The run was executed for 4,000 generations with a popu-
lation of five. This means that the fitness function was executed
20,000 times. At each generation, the average fitness of the genera-
tion is calculated and the member in the population with the best fit-
ness value (i.e., the highest link-vehicles) is identified. Figure 4
illustrates how the GA starts with a low system throughput and
locates good individuals in later generations. It is noted that most
improvements in the objective function occurred in the first 400 gen-
erations, with a slower improvement rate observed thereafter. Hence,
for practical considerations one may terminate the runs at the 400
generation without much loss in the objective function value. In this
case, the number of fitness function evaluations will be cut to 2,000.

Allocation of Green Time

Figure 5 illustrates how arterial and side-street green times were
changing over the study period. Note how, for a given cycle, the green
time for the arterial approaches increases in the downstream direction.
Not only is this desirable, but it is what one should hope for in condi-
tions of oversaturation and long queues. This pattern is exactly what
is required to clear queues from within the system links (starting with
downstream queues, of course) before normal forward progression
begins. Note also that one other prerequisite for progression has been
achieved—the common cycle length. As in Figure 5, for later cycles,
the allocation of green time between crossing and arterial approaches
has changed over time in such a way that a common cycle length
is maintained.

The preceding two observations are a clear demonstration of the
capability of the algorithm to effectively handle oversaturated con-
ditions, whereby it first managed and dispersed existing queues and
then provided signal settings so that normal forward progression
was achieved.

Figure 5 also shows that for certain cycles more green time is allo-
cated to the side street than to the arterial. This may appear coun-
terintuitive but it is not, because when a long queue is present in the
downstream approach, only limited arterial traffic may be released
from the upstream approach, which requires a short green time. If
longer green is given, intersection blockage may occur. In such a
case the algorithm allocates only limited green to the arterial, with
the rest of the green given to the side street. Therefore, the apparent



FIGURE 4 Progress of GA control algorithm toward best solution.

FIGURE 5 Variation in green times for arterial side-street approaches over
study period.
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FIGURE 6 Upstream intersection offset as a function of queue on downstream
link over study period.

counterintuitive allocation of green time actually is more the result
of the algorithm’s trying to avoid intersection blockage (hence de
facto red) and to ensure efficient use of green time.

Queues and Offsets

Figure 6 shows upstream intersection offsets as a function of queue
lengths on downstream links. Since offsets were designed to respond
to actual queues, a close association in the trends of both may 
be noted. In the early cycles, where significant queues are present, the
offsets are observed to start with negative values (typical of queue
clearance operations). As queues were being reduced, the offsets
gradually were changing to higher positive values, which is typical of
normal progression operations. These positive values fluctuated pro-
portionately in response to the minor queues that reappeared on some
of the links.

The cycle-to-cycle fluctuation of offsets is due to the number of
vehicles in the queue at the downstream approach. Therefore, this
pattern is more realistic and, hence, very desirable. It is an indication
that the offsets are responding to actual traffic conditions. So, as

expected, the algorithm is responding to demand but with con-
sideration of actual existing traffic. Hence, this fluctuation does not
mean that the algorithm is unreasonably changing the offsets between
cycles. For example, note that if the queue remains the same, the off-
set does not change. Also, when the queues are cleared, the offset fluc-
tuations diminish (or disappear altogether), which is exactly what
should normally be expected (Figure 6).

CONCLUSIONS AND RECOMMENDATIONS

This paper presents the formulation and solution of a new algorithm
for queue management and coordination of traffic signals along over-
saturated arterials. The proposed algorithm is different from existing
coordination procedures in two important respects: It is dynamic and
time-dependent, and it explicitly recognizes the presence and opera-
tional effects of queues on receiving links. A solution using GAs was
demonstrated for an example network composed of five signalized
intersections. However, the algorithm may be used for any size sys-
tem. Only practical considerations (such as computer memory, CPU
time, etc.) may limit the size of a system.



The results show that the control algorithm can provide dynamic,
time-dependent traffic control. Offsets and green times were dynam-
ically changed as a function of demand and queue lengths. When long
queues were present, the algorithm utilized appropriate (negative)
offsets to reduce or eliminate these queues and then gradually moved
into a positive offset-setting mode to provide forward green bands,
hence normal traffic progression. These robust features are lacking in
current coordination programs. Last, it should be noted that the algo-
rithm has good potential for on-line real-time implementation in an
ITS environment.

The results support the notion that signal coordination in over-
saturated conditions should be dynamic and time-dependent and that
offsets should be based on explicit consideration of queue lengths.
Several improvements must be incorporated into the current formu-
lation before the procedure is ready for real-life applications. Cases
with turns and two-way traffic should be covered. The procedure
should be tried on larger systems. Work is under way to address
these points.
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